
Nose Gear Controller System for Canard Aircra5

System Documenta8on and Build Instruc8ons

Author: Trevor Howard (trevor@borialis.com)

Date: 2024-02-05

Revision: 1.0

Introduc*on Nose Gear AutoExtend Controller 2 / 57

Nose Gear Controller System for Canard Aircra5

IntroducDon

The nose gear control system used on my Cozy C-GTCZ is an implementa*on of Marc Zeitlin’s
Auto-extend gear controller circuit first published (AFAIK) on the CozyBuilders mailing list, and
available at this DropBox loca*on: Nose Gear AutoExtend Circuit. The major innova*on with
this design was the incorpora*on of a LIDAR range-finder which (in conjunc*on with a pair of
airspeed sensors and a throVle posi*on sensor), permiVed the auto-extend feature to trigger
when expected – ie, during the landing phase – and not at other *mes such as slow flight, low
passes, etc.

Marc’s circuit was very cool but he only provided the circuit schema*c and a Bill of Materials.
The actual construc*on details were leY to the builder. While rela*vely straight-forward,
building with discrete components generally led to a rat’s nest of relays and wires and typically a
not-inconsiderable amount of post-build trouble-shoo*ng.

I did in fact build one of these circuits and it worked well, but aYer a while I wanted to
incorporate a couple of changes. Since I was playing around with CAD-based PCB design
soYware at the *me, I naturally gravitated to a PCB-based design.

System Basics

My implementa*on starts with Marc’s design and then adds some addi*onal elements.
The basic component is the Main Relay Board (MRB), and this is all that needs to be constructed
to implement the original circuit. In addi*on, there are two op*onal boards that can be built to
add addi*onal features.

Main Relay Board (required)
• Implements the core gear control and latching auto-extend func*onality
• Control point for the gear actuator/limit switches and gear control panel
• Provision for op*onal gear controller power switch or hard-wired (always-on)

gear control power
• Op*onally provides an on-board +5V regulated supply (needed for some

LIDARs)
• Op*onally provides on-board circuit protec*on via self-reseang PolyFuses
• Op*onally adds +5V gear-up and gear-down indica*ons for driving EFIS

contact inputs

Arduino Custom Shield (op:onal)

• Replaces the hardware-based determina*on of the auto-extend trigger signal
with a soYware-determined signal

Introduc*on Nose Gear AutoExtend Controller 3 / 57

• Provision for an op*onal LCD display module showing AGL al*tude and
airspeed

• Provision to interface with several different EFIS’s for airspeed input
• Provision to interface with several different LIDARs for AGL al*tude input
• Provision for audio-alerts and al*tude call-outs

Control Panel Board (op:onal)

• Simplifies the wiring for the gear control panel and allows individual
components to be replaced easily since they plug into the board

• Provision to automa*cally power off the gear controller aYer *me delay when
master power is off (s*ll in development)

Here’s a conceptual view of the system:

Figure 1 - Nose Gear AutoExtend System Conceptual Diagram

Main Relay Board

Arduino Shield

Control Panel

Actuator

EFIS
SERIAL TTL

+12V

GND

Gear SW
COM1

COM2

COM3

NO1

NO2

NC3

PWR
SW

+12V IN

GND
UP LED

IT LED

DN LED

AEX LED

AEX NBL BRK NBL

BRK NBL

4x 1'
20AWG

Up Limit Switch

NO

NC

COM

Dn Limit Switch

NO

NC

COM
M

4x 1'
20AWG

4x 1'
20AWG

DB15 Connector

DB25 Connector

LO SPD SNS HI SPD SNS

LIDAR
ANALOG

+5v
GND

AEX Status Led
UP SW Sns

JST1

JST2

DB9

DB9
+12V

LIDAR
ALARM

AEX Trigger

LIDAR
SERIAL

EFIS
RS232

LCD DSPLY

+5v
GND
3.3V Alarm Out

THRTL SNS

EXT Trigger Tap

+12V OUT

DB25 Connector

THRTL SNS

Aruduino Option

Original Nose Gear Circuit

Nose Gear AutoExtend System

Main Relay Board Nose Gear AutoExtend Controller 4 / 57

Main Relay Board Assembly Instruc8ons

These instruc*ons assume that you are proficient with normal through-hole soldering
techniques. Assembly is very straight forward and as long as aVen*on is paid to the correct
orienta*on of the parts you should have a working main controller board in a couple of hours.
All components except for one diode are mounted on the top side of the board.

This board is somewhat configurable depending on what you want to do. The main op*ons are:

+5 regulated supply

A buck-style voltage regulator that provides up to 1A of +5V power. Needed by some
LIDARS (Lightware) as a power supply. (also for the Arduino, if going that route).

Self-reseang circuit protec*on

Two polyfuses may op*onally be installed that will trigger when the downstream power
draw is > 10A (on the high-power side of the circuit) or > 1A (on the control side of the
circuit). The 10A polyfuse is mainly intended to prevent damage in the event of a gear
jam or micro-switch failure but it will also protect against shorts in the actuator wiring,
etc. The 1A polyfuse is mainly to guard against shorts in the control side wiring.

Note that this is meant to AUGMENT exis*ng circuit protec*on in the NG circuit, NOT
REPLACE IT! You should s*ll have a standard 15A fuse or breaker on the NG circuit
supply line.

EFIS-friendly gear-up and gear-down signals

Many EFIS’s provide a means to input the gear state which can be displayed on the EFIS
and/or give audio warnings. However, these are typically required to be sensor voltages
~ 5V. This op*on provides nega*ve logic (+5V = FALSE, GND = TRUE) gear signals which
can safely be used with an EFIS or EMS .

AEX trigger op*ons

The default build assumes that the AEX triggering inputs will be a posi*ve signal from a
Lightwave LIDAR configured as an al*tude alarm switch and a grounding connec*on
from three serially-connected switches (throVle posi*on microswitch and two speed
switches, per Marc’s original design). If this is what you are doing, it is simply a maVer of
connec*ng the LIDAR switch output and the two sides of the serial-switch outputs to the
appropriate interface points on the board and you are good to go.

Main Relay Board Nose Gear AutoExtend Controller 5 / 57

If using an Arduino to determine speed/al*tude and provide the AEX trigger, then the
serially-connected airspeed pressure switch stuff needs to be bypassed by installing a
jumper on JP2

If using some other means of external AEX triggering then the JP2 jumper is again used
to bypass the speed/throVle switches and the AEX func*on is triggered when the AEX
trigger input is raised HIGH (+5V). Nega*ve logic AEX triggering (where the AEX trigger
is grounded to ini*ate the AEX func*on) is also supported – in this case transistor Q2 is
not used, the base and collector pins of Q2 are shorted together via a wire or jumper,
and the 1K resistor R1 is replaced with a 0-ohm resistor or wire jumper.

Always-on Power op*on

The default build assumes that the gear controller will have an on-off gear controller
power switch built into the gear control panel. This allows you to power up the gear
controller and raise&lower the gear without needing the master power on. On the
other hand, some people like to have the gear “always on” by being powered directly
from the baVery – this gives the capability to raise&lower the gear by using the gear
posi*on select switch only. The relay board provides for either op*on.

Note that if using the Arduino or other microcontroller, there should be some means of
powering off the gear controller because otherwise the microcontroller and other ac*ve
components will present a small but ever-present current draw that will eventually kill
the baVery. The required shutoff could be done either from the afore-men*oned gear
power switch or from the master power switch if you have the gear powered from
master power.

The always-on power op*on is enabled by installing a jumper on the underside of the
board which essen*ally shorts together the pins on the control panel connector that
would normally go to either side of the gear power switch. Be advised that if this op*on
is enabled, the following components/op*ons CANNOT also be installed:

• UP LED
• +5V Supply
• Arduino
• EFIS-friendly gear signals
• Power LED

These represent ac*ve current draws if they are installed on (or have connec*ons to) the
relay board.

OK, with these op*ons in mind and without further ado let’s get on to the actual assembly
instruc*ons:

Main Relay Board Nose Gear AutoExtend Controller 6 / 57

The Board:

Here’s a picture of the board showing where the components go:

Figure 2 - Main Relay Board

Main Relay Board Nose Gear AutoExtend Controller 7 / 57

The Parts:

These are all the parts you will need for the Main Relay Board(Figure 3). Depending on what
op*ons you choose, some may not be required. Complete BOM’s are given below

Figure 3 - Main Relay Board Parts

Note: one part is missing from this picture, namely the two-terminal screw-in power connector.
It IS included in the basic board BOM though.

Bills of Materials (BOM):

The board can be configured in a number of different ways, so depending on your requirements
you may need only some of the parts shown above (and listed below).

Most if not all of the parts are available from Digikey, so I have provided Digikey lists for each
different op*on. You can use these lists to order directly from Digikey or just download them to
get the part numbers you can use to order from your preferred supplier.

Main Relay Board Nose Gear AutoExtend Controller 8 / 57

Basic Board: hVps://www.digikey.com/en/mylists/list/AF6GQ96Q92
5V Regulated Supply: hVps://www.digikey.com/en/mylists/list/KT60I4XPJO
Self-reseang Circuit Protec*on: hVps://www.digikey.com/en/mylists/list/MVLB1ONKQR
EFIS-friendly Gear Posi*on Signals: hVps://www.digikey.com/en/mylists/list/UNIHME86OV

Other miscellaneous items like resistors, JST connector kits, stand-offs, moun*ng hardware and
the like are not included in the BOMs. These can be acquired from vendors such as Digikey and
Mouser but it is cheaper to get them from Amazon, Robotshop, Sparkfun, Adafruit, etc.

Main Relay Board Nose Gear AutoExtend Controller 9 / 57

Board Assembly

Generally, we’ll install all the small components (resistors, diodes, etc) first since geang to the
moun*ng posi*ons is more difficult once the relays are on. Note that for a full Arduino install,
all the op*onal Relay board components are required. It’s helpful to print out a copy of the
schema*c (Appendix A) as a reference to guide you during board assembly.

1) Install all the 1N4007 diodes(Figure 4). NOTE: all the diodes are mounted to the top of
the board, but NOT diode D5 (the AEX relay flyback diode). D5 must be mounted on
the boCom of the board. If D5 is mounted on top then the AEX relay will not sit
correctly on the board. Pay close aVen*on to orienta*on of the diodes. Here’s the
board with the diodes placed:

Figure 4 - Main Relay Board, Diodes Placed

2) (Op*onal) If using the circuit protec*on, install the two polyfuses PF1 (LF600.16) and
PF2 (LF.075.6). Note these are surface mount components, so put some flux on the pads
so that solder will flow underneath them

Main Relay Board Nose Gear AutoExtend Controller 10 / 57

3) If NOT using the circuit protec*on, solder two SMT jumpers across the pads where PF1
and PF2 would go (Figure 5):

Figure 5 - Main Relay Board, No Circuit ProtecFon

Two segments of #14 bare copper house wiring 8mm long would also work.

4) If NOT using a separate gear power switch (ie, gear is always powered from the baCery
or is powered from the master switch) short the two sides of the DB25 control panel
connector together with an SMT jumper using the pads provided on the underside of
the board(Figure 6):

Figure 6 - Main Relay Board - underside, power switch bypass jumper installed

Two segments of #14 bare copper house wiring 8mm long would also work.

5) Install jumper header JP2.
6) Install the 2-port screw-terminal power connector on the right top of the board (just to

the leY of the revision call-out). Ensure the ports (where the wires are inserted) are
oriented to the outside of the board!

7) Inspect the DB15 and DB25 connectors for bent pins and straighten, if necessary. Then
install, making sure ALL the pins extend the same distance through the underside of the
board. Then solder in place.(Figure 7)

Main Relay Board Nose Gear AutoExtend Controller 11 / 57

8) (Op*onal) Install the JST-XH headers. You could always just hardwire the external
connec*ons by soldering wires directly to the board, but I recommend using the JST
connectors for ease of assembly. Make sure to install the headers so they line up with
the component outline (the slots on the headers will point to the outside of the
board)(Figure 7)

9) (Op*onal) If using the +5V supply, install capacitors C1 and C4 and inductor L2. These
can be placed in any orienta*on. Install voltage regulator DC1, ensuring that it is in the
correct orienta*on (matches the outline on the board) (Figure 7).

10) (Op*onal) If using the gear-up/gear-down signals, install T1, T2, R1, R3, R5 and R6. Note
that use of the gear-up/gear-down signals also requires that the +5V supply op*on be
installed as well. Pay aVen*on to the orienta*on of the 2N2222 transistors – the tab
should be poin*ng in the same direc*on as the outline on the board (Figure 7).

11) (Op*onal) If using standard AEX posi*ve +5V triggering install the power transistor Q2
and resistor R2(Figure 7)

Figure 7 -Main Relay Board, all opFons installed

Main Relay Board Nose Gear AutoExtend Controller 12 / 57

12) (Op*onal, external AEX trigger reversed logic). Insert a jumper on the jumper header
taking the place of Q2. The two pins bridged by the jumper should be the two closest to
the main power connector (Figure 8).

Figure 8 - AEX External Trigger w/Reversed Logic

13) If using the LED-illuminated AEX enable switch called out in the BOM, install current
limi*ng resistor R4

Main Relay Board Nose Gear AutoExtend Controller 13 / 57

14) Lastly, install the three relays. Note that due to the large hole sizes, these will suck up a

lot of solder so make sure you get the hole completely filled in with solder. Adding
addi*onal flux to the relay pins and through-hole pads wouldn’t be a bad idea. The
finished board should look something like this (Figure 9):

Figure 9 - Main Relay Board complete

15) If using hardware speed switches as per Marc’s OG circuit, all you need to do now is

construct the DB15 relay interface and DB25 control panel wire harnesses and wire up
the switch and trigger interfaces. See Appendix 2 (Wire harnesses) for instruc*ons on
that. If using the Arduino, see the next sec*on.

Arduino Shield Nose Gear AutoExtend Controller 14 / 57

Arduino Custom Shield Assembly Instruc8ons

“Arduino” is the generic name for a family of customizable microcontroller boards that have
become very popular in the maker community. They come in a variety of flavours, but for my
gear controller implementa*on I have chosen the “Uno” variant as it is cheap (~ $10) and plenty
powerful enough for the task at hand.

The Uno (and indeed, most of the Arduino variants) allows you to add addi*onal hardware
components through the use of a “shield”, which is essen*ally a daughter-card that plugs into
the top of the board using a standardized set of headers. Mul*ple shields may be stacked on
top of one another, but in our case, we will just be using one custom-built shield.

The Arduino+shield combo:

• Handles serial communica*ons with a variety of LIDARs to obtain al*tude data
• Handles serial communica*ons with a variety of EFISs to obtain airspeed data
• Allows for a LIDAR configured to output an analog signal for al*tude to obtain al*tude

data
• Generates an AEX trigger signal based on speed, al*tude and RPM (or throVle posi*on)

inputs
• Provides AEX status informa*on to the pilot via the status LED on the AEX enable switch
• Op*onally, provides AGL al*tude and airspeed informa*on to the pilot via an LCD display
• Op*onally, provides voice callouts of gear status and AGL al*tude directly to the pilot’s

headset or aircraY intercom

As with the Main Relay board, the shield is somewhat customizable depending on what you are
using to provide al*tude and airspeed data and what op*ons you choose to implement.

Arduino Shield Nose Gear AutoExtend Controller 15 / 57

The Board

Here is what the (unpopulated) board looks like, along with the Arduino Uno that it will sit on
top of (Figure 10):

Figure 10 - Arduino Shield Board and Arduino Master Board

Arduino Shield Nose Gear AutoExtend Controller 16 / 57

The Parts

Here are all the parts you will need. Depending on the op*ons you choose, some will not be
required(Figure 11):

Figure 11 - Arduino Shield Components

Bills of Materials (BOM):

The board can be configured in a number of different ways, so depending on your requirements
you may need only some of the parts shown above (and listed below).

Most if not all of the parts are available from Digikey, so I have provided Digikey lists for each
different op*on. You can use these lists to order directly from Digikey or just download them to
get the part numbers you can use to order from your preferred supplier.

Basic Custom Shield Board: hVps://www.digikey.com/en/mylists/list/J6HDY1LBND
LCD Display : hVps://www.digikey.com/en/mylists/list/G15YV3GI4F

Arduino Shield Nose Gear AutoExtend Controller 17 / 57

Audio Alerts: hVps://www.digikey.com/en/mylists/list/GKSGMX4RWC

Other miscellaneous items like resistors, JST connector kits, stand-offs, moun*ng hardware and
the like are not included in the BOMs. These can be acquired from vendors such as Digikey and
Mouser but it is cheaper to get them from Amazon, Robotshop, Sparkfun, Adafruit, etc.

Arduino Shield Nose Gear AutoExtend Controller 18 / 57

Board Assembly

As with the main relay board, all components are installed on the top side of the board.

Unlike the main relay board, we have some SMT (surface mount technology) components to
mount. Despite what many Youtube videos claim, these can be tough to hand-solder. You need
an appropriately sized (ie very small) soldering *p, a steady hand, and (at least for me), some
means of magnifica*on to see what you are doing. If you have never done SMT soldering
before, I would suggest geang an SMT prac*ce kit before aVemp*ng to solder these
components. The main reason for choosing SMT rather than through-hole components was cost
and availability (for instance, the DIP version of the MAX3232 used for the RS232 interface is
$15 vs $1 for the SMT version).

Okay, here we go:

1. Mount the MAX3232 chip. Since this is an SMT chip, flood the pads with some flux, add
a small dab of solder on one of the corner pads, posi*on the chip and tack-weld it down.
Move to the other side of the chip, get a small blob of solder on the iron and draw it
across the line of pins. You want the solder to flow underneath the pins. When the side
opposite the tacked down pin is done, move to the other side. You will most likely get
solder bridges, these can be fixed by repeatedly drawing the *p across the line of pins,
or if necessary, de-soldering wick can be used to soak up unwanted solder. When done,
you it should look something like this:

Figure 12 - MAX3232 chip installed

Arduino Shield Nose Gear AutoExtend Controller 19 / 57

2. Confirm that there are no solder bridges by carefully inspec*ng with a magnifier and/or
tes*ng adjacent pins using a mul*meter

3. Install capacitors C1(.1uf), C2(.33uf), C3(.33uf), C4(.33uf) and C5(.1uf). Orienta*on
doesn’t maVer.

4. (Op*onal) If using the LCD display, install the SMT I2C booster chip LTC4311. Use the
technique outlined in Step 1 to solder this very *ny component. Install capacitor
C7(.01uf).

Editor’s note: it may not be necessary to do this step. The main reason for the booster is
to protect against noise on the I2C bus which is used to talk to the remote display. I have
had good luck using shielded wire for the bus lines. My advice would be to skip this step
iniGally and only add the LTC4311 chip later if the display seems flakey.
 - tdh

5. Install resistors R1 (10K), R2(5K), R3 (10K) and R4 (10K).
6. Install the Arduino shield headers. Take care to get them perpendicular to the board or it

will be difficult to insert the shield onto the Arduino. (If you have a solderless
breadboard, a good way to do it is to insert some (male) jumper headers into the
breadboard, plug the female side of the Arduino headers into those and then invert the
shield onto the headers so you can solder on the back side).

7. Install the JST-XH external interface headers J1, J2, J3. Make sure to orient them so that
the slots on the headers point outwards.

8. Install the DB9 connectors.
9. Install the transorb D1 and capacitor C6 (100uf). These components make the shield less

suscep*ble to RMI/EMI and noise spikes from the power supply line (say, from engine
startup). Note that orienta*on DOES maVer for these components(Figure 13):

Figure 13 - Arduino Shield Transorb and Power Supply Filter Capacitor Installed

For the electroly*c cap, the lighter stripe with a minus sign (-) on it should be to the
outside of the board.

10. (Op*onal) If using the audio alerts op*on, install the supplied headers onto the MP3

daughter card. These may require shortening. If so, trim to the appropriate number of

Arduino Shield Nose Gear AutoExtend Controller 20 / 57

pins using diagonal cuVers or a u*lity knife. Then install the headers first onto the MP3
daughter-card, and then solder the MP3 daughter-card to the shield board.

11. Install the three jumper headers J1, J2, and J3
12. If your EFIS outputs TTL-level serial signals (unlikely), then install a jumper on JP1.

Otherwise, install jumpers on JP2 and JP3. This enables the MAX3232 RS232-serial
conversion chip. The only EFIS that I’m aware of that outputs TTL-level serial data is the
MGL ASX-1; all others (Dynon, Garmin, GRT) use the RS232 serial protocol.

Arduino Shield Nose Gear AutoExtend Controller 21 / 57

13. This completes the assembly of the shield, and the completed board should look
something like this(Figure 14):

Figure 14 - Arduino Shield Assembly Completed

While the hardware assembly is done, the Arduino+shield combo is useless in this state
– to make it useful, we need to configure and load the microcontroller firmware.
Instruc*ons for this are in the next sec*on.

Arduino Shield Nose Gear AutoExtend Controller 22 / 57

Configuring and loading the Arduino firmware

Ok, we’ve built the hardware, now we need to make it work. The Arduino ecosystem is well
developed and documented, so I think it would be redundant and pointless to go into any depth
here. Head on over to Arduino.cc and download the Arduino IDE for your preferred pla|orm.
Try out some tutorials, make sure you are able to upload a program (or “sketch”, as they are
called in Arduino-land), and once you are comfortable with the IDE and are able to upload a
tutorial sketch onto your board then proceed.

First, prepare your IDE with the libraries used by the GearAutoExtend firmware.
Simply copy the contents of the “Libraries” folder from wherever you downloaded the
GearAutoExtend project to the “Libraries” folder in the Arduino home directory (where you
installed the Arduino IDE). You can also use the IDE to install the latest version of the required
libraries, using the “Tools->Manage Libraries” menu, but if you just copy the supplied libraries
then you know have versions that will be compa*ble with the code that uses them.

Copy the whole folder “GearAutoExtend” from wherever you downloaded it from into the
Arduino home folder (typically just called “Arduino”). Fire up the IDE and navigate to the folder
GearAutoExtend, expand it and open the sketch file “GearAutoExtend.ino”. You should see
something like this (Figure 15):

Figure 15 - Arduino IDE

Arduino Shield Nose Gear AutoExtend Controller 23 / 57

Examine the comment block at the top - it lists the supported EFIS and LIDAR types. If you see
your EFIS and LIDAR there, then congratula*ons, life is easy. (If you don’t, well then welcome to
the world of Arduino soYware development ;)).

Assuming your LIDAR and EFIS are supported, then configuring the soYware is a maVer of
seang the two #define statements at the top to the correct values for your hardware (cut and
paste from the comment block recommended for this).

Eg, if you have a SF11 LIDAR which is configured to provide an analog voltage as an al*tude
signal, and you have a Garmin G3X EFIS, then you would change the two #define statements to:

#define EFIS_TYPE EFIS_TYPE_G3X
#define LIDAR_TYPE LIDAR_TYPE_SF11_ANALOG

By default, the LCD display support is included. It can be removed by changing this line:

#define LCD_DISPLAY

 to

//#define LCD_DISPLAY

(i.e., change it into a comment). Dele*ng the line altogether also works. BTW, nothing bad will
happen if you leave the LCD screen support enabled but don’t install the LCD screen module.

Next, the audio alerts are enabled by default but you can disable them by changing the
following line:

#define AUDIO_ALERTS

 to

//#define AUDIO_ALERTS

Again, nothing bad will happen if you leave audio alerts enabled but don’t have the MP3
daughter card installed. However, since the ini*aliza*on code looks for the audio card if
enabled, it will be slower to ini*alize as it tries to talk to a card that doesn’t exist.

That’s it! Now, ensure that the code compiles by clicking on the compile buVon at the top leY
of the code window(Figure 16):

Arduino Shield Nose Gear AutoExtend Controller 24 / 57

Figure 16 - Arduino IDE Compile Check

If no error messages occur, then upload the code to the board(Figure 17):

Figure 17 - Arduino IDE Upload Firmware to Board

Note that the serial port used by the LIDAR uses the same GPIO pins (D0 and D1) used to upload
firmware to the board so ensure that an ac*ve LIDAR is not plugged it while the firmware is
being updated (you’ll likely get board *meout messages while uploading the firmware if a LIDAR
module is plugged in and powered up)

Arduino Shield Nose Gear AutoExtend Controller 25 / 57

SeOng up the Audio Card

The DFROBOT DFR0768 daughter-card is a complete MP3 player with 128MB of onboard flash
memory for mp3 audio files. The Arduino talks to it using a soYware serial connec*on on GPIO
pins D8/D9. Before it can be used, we need to load the audio files onto the flash memory and
configure some parameters.

Loading the Sounds

This is easy – use your micro-USB cable to connect the DFR0768 to your computer. It will show
up as a USB flash drive called NONAME. Just copy the files in the Sounds directory of the
GearAutoExtend folder to the root directory of the NONAME flash drive. Make sure to EJECT
the flash drive before disconnec*ng the USB cable.

Configuring the Card

There are some persistent defaults we need to override, namely the startup mode, startup
sound and serial communica*ons baud rate (the default baud rate is too fast for an Arduino’s
soYware serial connec*on). A special-purpose one-*me sketch has been provided for this
called mp3_player_init.

First, plug your computer into the Arduino using the USB-micro cable.
Copy the mp3_player_init folder into your Arduino home directory, fire up the Arduino IDE and
open sketch “mp3_player_init””. Open up a serial console using “Tools->Serial Monitor”. Set
the baud rate of the serial monitor to 115200.

Now upload the sketch to the Arduino.

The following messages should display on the serial monitor:

Trying to start at default baud rate of 115200…
Success! Seang Gear Auto-extend defaults...
VOL: 20
Playmode:1
MP3 Player setup is complete.
Restart required

Now, unplug the Arduino, then plug it back in.

Arduino Shield Nose Gear AutoExtend Controller 26 / 57

If the MP3 player ini*aliza*on was successful, the following messages should appear:

Unable to communicate at 115200 baud, trying 19200...
Success!
VOL: 20
Playmode:3

This indicates that the reset was successful and the module is now ready to be used for
GearAutoExtend audio alerts.

Control Panel Board Nose Gear AutoExtend Controller 27 / 57

Control Panel Board Assembly Instruc8ons

I’m not convinced that having a separate board for the control panel saves you a whole lot of
*me vs just wiring up the discrete components, but it does make it a liVle more convenient
since it can be done on the bench instead of trying to buV-splice a ton of wires together whilst
huddled in the cockpit or needing to route a long snake with a DB25 connector on the end. But
I needed the board for another (as yet unreleased) feature, so WTH, here is it.

First, here’s the control panel(Figure 18):

Figure 18 - Nose Gear Control Panel

Since I’m using the Arduino microcontroller I need a power switch, then the standard 3-posi*on
gear switch, the 3 status LED’s, and an AEX enable switch. My gear selector switch is a wimpy
miniature toggle, which I prefer over the honking big standard toggle switch, but each to his/her
own. The current flows through this switch are small (< 1A) so the current ra*ng of a bigger
switch is not required, and 4PDT (or 3PDT) normal-size toggle switches take up a ton of real-
estate behind the 3”x 1.5” panel, thus the small toggle. The AEX enable switch is independently
illuminated and communicates AEX status via blink codes, in the absence of the op*onal LCD
panel.

Control Panel Board Nose Gear AutoExtend Controller 28 / 57

The Board

PreVy straigh|orward, basically just a bunch of connectors. Note that all the connectors are
currently JST-XH (25mm pitch) connectors but a future revision will change the LED connectors
to JST-PH, since the -XH connectors don’t fit through the .25” hole need for the panel LEDs
(Figure 19)

Figure 19 - Control Panel Board

Control Panel Board Nose Gear AutoExtend Controller 29 / 57

The Parts

Switches, connectors, LEDs (Figure 20):

Figure 20 - Control Panel Components

BOMs:

hVps://www.digikey.com/en/mylists/list/U84KF1U2JM

Skip the SPST power switch if you have always-on power.
Change the 4PDT toggle to a 3PDT toggle if not using the Arduino

Control Panel Board Nose Gear AutoExtend Controller 30 / 57

Board/Control Panel Assembly

Note that to make use of the JST-XH connector headers on the board means you will need the
appropriate matching JST-XH plugs, push-in terminals and crimper. JST-XH kits with crimper
included are ~$30 from Amazon, OR sets of pre-crimped JST-XH 2-pin and 4-pin cables are
readily available on Amazon for ~$10 (just search for “JST-XH”). Alterna*vely, the components
can just be wired directly to the board which is easier but means the control panel is
permanently aVached to the board because of the front-mount components (LEDs). Other
combina*ons are possible, for instance the rocker switches spec’ed out in the BOM accept
quick-disconnect terminals so the leads could be hard-wired to the board and the switch would
s*ll be detachable via the quick-disconnects.

The following instruc*ons assume that the JST connectors are being used throughout.

So:

1. Mount the DB25 connector.
2. Mount the 7 JST connector headers. Orient the headers so that the open side is toward

the front of the board (control-panel side). NOTE: the 2-pin connector labelled
“PWR_SW” is NOT used.

3. Assemble (or obtain) 7 2-wire cables with JST-XH 2-pin plugs, approximately 8cm long
4. Assemble (or obtain) 2 4-wire cables with JST-XH 4-pin plugs, approximately 8cm long
5. (Prep Power sw leads) Solder a 10cm length of min. #16 wire (#14 preferred) to the pads

labelled SW_PWR and UNSW_PWR. Then crimp a blue .187 PIDG connector to each free
end. These will be used to aVach the power switch to the board.

6. (Prep Power sw LED leads). Strip and *n the ends from one of the 2-wire cables, slip
some shrink wrap on each one, then solder to the LED tabs on the power switch. Take
care to get the correct orienta*on – the lead on the “+” terminal of the power switch
should go to the “+” terminal of the JST connector header labelled PWR_LED.

7. (Prep AEX sw leads) Crimp the red .110 PIDG connectors to the bare ends of three of the
2-wire cables. These will be used to connect the AEX switch to the board.

8. (Power switch LED current-limi*ng resistor) Mount the 3.3K SMD resistor between the
pads labelled “R1”

Control Panel Board Nose Gear AutoExtend Controller 31 / 57

9. (AVach 4-wire JST cables to the toggle switch solder tabs). Using a sharpie, label one of

the 4-wire cables “A” and the other one “B”. Also, with the switch actuator facing away
from you label each switch column (i.e. pole) 1-2-3-4 from leY-to right on the top of the
switch. Before beginning to solder the wires on the switch solder lugs, strip and *n
about 1cm of wire on each end and put a piece of shrink wrap on each of the eight
wires. AVach the two JST four-wire cables as per the following diagram (Figure 21):

Figure 21 - Control Panel Gear PosiFon Select Switch Wiring

When soldering the solder tabs on the switch, bend the *nned end into a u-shape and
hook it through the hole in the solder tap, crimp the “hook” *ght onto the tab and then
solder in place. Slip the shrink-wrap down over the solder tab and heat-shrink
everything in place.

10. (Prepare LEDs) Trim the flying leads on the panel LED’s to 8cm. Insert the three panel
LEDs into the control panel (note: the JST-XH plugs will NOT fit through the .25” hole
required for the panel-mount LED’s. A future board revision will use smaller connectors).
Strip and *n the ends, then slip some shrink-wrap on each one. Iden*fy the ground pin
(“-“) on the appropriate board connector and solder the ground line from the plug to the
ground (black) lead of the LED. Then do the same for the supply lead (red or white).

1

2

3

4

5

6

7

8

9 12

11

10

1 2 3 4

GEAR SW A

1 2 3 4

GEAR SW B

SW1 SW2 SW3 SW4

SW_COM4
(GND)

UP_SW_SNS GND

SW_COM1
(AEX LATCH)

SW_COM2
(UP)

SW_COM3
(DN)

UP_CTL

DN_CTL

4PDT
Gear Switch
(BOTTOM VIEW)

Control Panel Bo,om

Control Panel Top

Control Panel Board Nose Gear AutoExtend Controller 32 / 57

Shrink-wrap the exposed inline-connec*ons.

11. (Connect components to board). Mount the switches to the control panel. The lighted
switches should be oriented so the that the LED window on the switch is at the top. Plug
in all the JST connectors (make sure to get the two 4-pin SW-A and SW-B connectors into
their correct headers). AVach the soldered-in power-supply lines to the power switch
using the PIDG quick-disconnects. AVach the AEX switch LED 2-wire cable to the top two
terminals on the switch, such that the leY side terminal (looking down from the top)
goes to the “+“ pin on the board connector, and the right side terminal goes to the “-”
pin on board. Connect another two-wire cable from the “AEX_ENABLE” connector to the
leY-side terminals on the switch and the other cable from the “DYN_BRAKE” connector
to the right-side terminals on the switch.

The completed control panel board should look something like this (Figure 22):

Figure 22 - Control Panel Board Completed

Control Panel Board Nose Gear AutoExtend Controller 33 / 57

As a QC check it’s not a bad idea to pull out your mul*meter and confirm that all the pins on the
DB25 connector are going to the correct places. Turn all the switches OFF (and gear switch to
middle posi*on) before you do this test.

PIN Func*on Control Panel Loca*on
1 UNSW_PWR Power switch top terminal
2 UNSW_PWR Power switch top terminal
3 UP_CTL Gear switch SW2 boVom row
4 SW_COM3 Gear switch SW3 middle row
5 DN_CTL Gear switch SW3 top row
6 UP_LED UP (top) LED power lead
7 DN_LED DN (boVom) LED power lead
8 IT_LED In-transit (middle) LED power lead
9 AEX_ENABLE_SW AEX enable switch, leY pole, boVom terminal
10 AEX_LED AEX enable switch LED, leY, top posi*on
11 GND All LED GND leads, power switch LED top right terminal,

AEX enable switch top right terminal, Gear switch SW4
middle row, gear switch SW1 boVom row

12 SW_PWR Power switch boVom terminal
13 SW_PWR Power switch boVom terminal
14 UNSW_PWR Power switch top terminal
15 UNSW_PWR Power switch top terminal
16 UP_SW_SNS Gear switch SW4, boVom row
17 SW_COM2 Gear switch SW2 middle row
18 n/c
19 SW_COM1 Gear switch SW1 middle row
20 DYN_BRAKE_OUT AEX enable switch, right pole, boVom terminal
21 DYN_BRAKE_IN AEX Enable switch, right pole, middle terminal
22 n/c
23 n/c
24 SW_PWR Power switch boVom terminal
25 SW_PWR Power switch boVom terminal, AEX switch leY pole middle

terminal

Schema*cs Nose Gear AutoExtend Controller 34 / 57

Appendix 1 – Schema8cs

The Eagle schema*c (.sch) and board layout (.brd) files are part of the download package, but
just for reference I have included them here. If there are any discrepancies between these
printed versions and the Eagle files, then the Eagle files should be considered defini*ve.

Main Relay Board (Figure 23):

Figure 23 - Main Relay Board SchemaFc

2024-01-18	12:21		f=0.79		/Users/trevor/Documents/EAGLE/projects/gear_controller_relay_rev4.sch	(Sheet:	1/1)

SpiceOrder	1SpiceOrder	2

SpiceOrder	1SpiceOrder	2

SpiceOrder	1 SpiceOrder	2 SpiceOrder	1SpiceOrder	2

S
p

ic
e

O
rd

e
r	

1
S

p
ic

e
O

rd
e

r	
2

SpiceOrder	1 SpiceOrder	2SpiceOrder	1SpiceOrder	2

V
C

C

GND

LY30

1000
1000

TIP41C

R-78C5.0-1.0

GND

V
C

C

GND

12A
V

C
C

10uf 10uf

1
A

B
IG

_
P

W
R

B
IG

_
P

W
R

1000

GND

270

10K

10K

50A

0A

0B
3A

3B 7B

7A
1B

1A

4A

2B

2A
4B

8A

8B
6A

6B

DN_RLY

0A

0B
3A

3B 7B

7A
1B

1A

4A

2B

2A
4B

8A

8B
6A

6B

UP_RLY

2
1

AEX_RLY

O1S1

P
1

O2S2

P
2

O3S3

P
3

T1
R1

D1

D2

D
3

D4

D5

D
6

D7

R2

12

JP2 Q2

GND

VIN
1

VOUT
3

2

DC1

1
1

2
2

U$2
PF1

21
L2

C3 C4

P
F

2

T2
R3

R4

R5

R6

1
1

2
2

3
3

4
4

J3

1
1

2
2

3
3

4
4

5
5

6
6

J2

1
1

2
2

3
3

4
4

J1

JMP1

MOTOR_BLK

MOTOR_RED

UP_CTL

UP_LED

UP_LED

UP_LED

DN_CTL

DN_CTL

DN_CTL

G
N

D

GND

G
N

D

GND

G
N

D

DN_RLY_COIL+

UP_RLY_COIL+
IT_LED

IT_LED

AEX_ENABLE_SW

AEX_ENABLE_SW

VCC

SW_COM1

SW_COM1

SW_COM2

SW_COM2 SW_COM3

SW_COM3

AEX_TRIGGER

DYN_BRAKE_IN

GEAR_DN_SNS_OUT

GEAR_DN_SNS_OUT

DN_LED

DN_LED

DN_LED

AEX_LED

+5V

+5V

PWR_OUT

PWR_IN

BIG_PWR

BIG_PWR

DYN_BRAKE_OUT

GEAR_UP_SNS_OUT

GEAR_UP_SNS_OUT

AEX_EXT_OUT

A
E

X
_

E
X

T
_

IN

UP_SW_SNS

Date: Sheet:

REV:

TITLE:

Document	Number:

2024-01-18	12:16 1/1

gear_controller_relay_rev4

DC/DC	CONVERTER

MOTOR_BLK
MOTOR_BLK

MOTOR_BLK
MOTOR_BLK

GUMS_NO

MOTOR_RED
MOTOR_RED

MOTOR_RED
MOTOR_RED

GUMS_NC
GDMS_COM
GDMS_NO
GDMS_NC

RLY1 RLY2

RLY1 RLY2

AEX	Latch

GUMS_COM
12uh

4

Schema*cs Nose Gear AutoExtend Controller 35 / 57

Arduino Shield (Figure 24):

Figure 24 - Arduino Shield Board SchemaFc

2024-01-18	12:25		f=0.83		/Users/trevor/Documents/EAGLE/projects/gear_controller_uno_shield.sch	(Sheet:	1/1)

RS-232TTL/CMOS

VCC

GND

.1uF

.33uF

.33uF

.33uF

.1uF

VCC

GND

VCC

GND

GND

GND

GND

VCC

GND

VCC

DFR0768_MP3_PLAYER

VCC

MAX3232

3A/250V

10K 5K

LTC4311

VCC
1

0
K

1
0

K

VCC VCC

.0
1

u
F

C1

C2

C3

C4

C5

1

6 2

7 3

8 4

9 5

1

62

73

84

95

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

RX

TX

D2

*D3

D4

*D5

*D6

D7

D8

*D9

*D10

*D11

D12

D13

A0

A1

A2

A3

A4

A5

VIN

RES

5V

AREF

GND

GND

GND

3.3V

IOREF

SDA

SCL

VIN
1

GND
2

RX
3

TX
4

DACR
5

DACL
6

L+
12

L-
11

R+
10

R-
9

PLAY
8

KEY
7

C1+
1

C1-
3

C2+
4

C2-
5

T1IN
11

T2IN
10

R1OUT
12

R2OUT
9

V+
2

V-
6

T1OUT
14

T2OUT
7

R1IN
13

R2IN
8G

N
D

1
5

V
C

C
1

6U1

1
1

2
2

3
3

4
4

5
5

6
6

J2

1
1

2
2

3
3

4
4

J3

1
1

2
2

3
3

4
4

J1

R1 R2
D

1

VCC
1

GND_2
2

ENABLE
3

BUS2
4

GND
5

BUS1
6

U2

R
3

R
4

C
7

LIDAR_TX

SPD_TX

S
P

D
_

R
X

SPD_RX

UP_SW_SNS

LIDAR_RX

AEX_ENABLE_SW

RESET

VIN

GEAR_UP_SNS

LDR_ANLG

LDR_ANLG
LCD_SDA
LCD_SCL

MP3_PLAYER_TX

THROTTLE_SNS
MP3_PLAYER_RX

D11
D12AREF

AEX_LED_OUT

+12V

+12V

SPD_RX_IN

D13

GEAR_DN_SNS

AUDIO_GND

AUDIO_GND

AUDIO_OUT

AUDIO_OUT

AEX_TRIG

Schema*cs Nose Gear AutoExtend Controller 36 / 57

Control Panel Board (Figure 25)

Note that the top secGon of this circuit with the MOSFET and 555 Gmer implements the soO
power on/off with auto-off delay feature. This is sGll in development, and will likely change in
the future, so ignore it for now.

Figure 25 - Gear Control Panel Board SchemaFc

2024-01-18	12:28		f=0.91		/Users/trevor/Documents/EAGLE/projects/gear_controller_ctlpnl.sch	(Sheet:	1/1)

GND

555

1
1

2
2

PWR_LED

1
1

2
2

3
3

4
4

G
E
A
R
_
S
W
_
A

1
1

2
2

3
3

4
4

G
E
A
R
_
S
W
_
B

1
1

2
2

AEX_LED

1
1

2
2

AEX_ENABLE_SW

1
1

2
2

DYN_BRK_SW

1
1

2
2

DN_LED

1
1

2
2

IT_LED

1
1

2
2

UP_LED

TRE
6

OUT
3

DIS
7

TRI
2

VCC+
8

GND
1

CON
5

/RES
4

POWER_OFF_DELAY

1
1

2
2

PWR_SW

SW_COM3
DN_CTL
UP_LED
DN_LED
IT_LED
AEX_ENABLE_SW
AEX_LED
GND

UP_SW_SNS
SW_COM2

SW_COM1
DYN_BRAKE_OUT
DYN_BRAKE_IN

UP_CTL

UNSW_PWR

UNSW_PWR

SW_PWR

SW_PWR

SW_PWR

MN_PWR_SNS

Date: Sheet:

REV:

TITLE:

Document	Number:

2023-11-04	01:03 1/1

gear_controller_ctlpnl

1

Wire Harnesses Nose Gear AutoExtend Controller 37 / 57

Appendix 2 – Wire Harnesses

Probably the most tedious part of the build is to construct the wire harnesses. I picked D-SUB
connectors for the external harnesses because the PCB-ma*ng connectors are cheap and easily
obtainable, and I assumed that most Cozy/EZ builders would own or have access to a D-SUB pin
crimp tool. I picked JST-XH connectors for the internal (board-to-board) harnesses because they
are also fairly ubiquitous and have a locking feature. Most people will NOT have the requisite
crimp tool for these but the crimp tools are rela*vely cheap ($35), or, if you prefer, pre-crimped
wire kits are available from Amazon for about $15, if you’re not fussy about needing to use
Tefzel wire. Note: if you’re using machined D-SUB pins (my preference), these pins are preVy
expensive if you get them through Digikey or AS&S (~ .80/pin at AS&S) but can oYen be found
on ebay for a lot less. Using D-SUB connectors with solder cups is much cheaper of course.

Regarding the use of D-SUB pins (which have a max current ra*ng of 5A) for the high-current
15A lines, refer to this ar*cle by Bob Nuckolls (of Aerolectric Connec*on fame) which talks
about this exact thing: hVp://www.aeroelectric.com/ar*cles/High_Currents_thru_D-
Subs/High_Current_D-Subs.html Essen*ally you just gang together however many you need to
get up to your max expected current. In this case we group four DSUB pins for each high-
current line, which gives a max theore*cal current ra*ng of 20A. BUT (and this is key), it is
essen*al to have a 30cm pigtail on each pin, (ideally 15cm on each side of the pin) to normalize
the spread-out current load (read the ar*cle to find out why).

Depending on your setup you’ll need some or all of the following external wire harnesses:

• Main relay board to actuator & microswitches (DB15).
• Main relay board to control panel (DB25)
• Main relay board to external sensors (JST-XH)
• Arduino shield to EFIS and sensors (DB9)
• Arduino shield to LCD display and audio jack (DB9)

And the following internal wire harnesses:

• Arduino power/gnd (JST-XH)
• Arduino control panel sensors&trigger (JST-XH)

See below for pinout/construc*on details on all of these.

Wire Harnesses Nose Gear AutoExtend Controller 38 / 57

Main Relay Board to Actuator Harness

Before construc*ng this harness, verify the ac*on of your nose gear limit switches as it appears
there may be some variants out in the field. The standard configura*on is that switches are
actuated (COM = NO) when the gear is not at the limit of travel, and when the limit (either up or
down) is reached the switch turns off (COM = NC). If your setup is such that the microswitch is
actuated when the limit is reached, then you will need to reverse the NC and NO pins at the
DB15 connector.

If (like me) you have an EZ-NoseliY but removed the original harness with its molex connector
then the required harness goes thusly (Figure 26):

Figure 26 - Main Relay Board to Actuator Wire Harness

The #20 wire pigtails coming from 1,2,9,10 and 7,8,14,15 extend from the connector about
30cm (12”), then are soldered or (beVer) crimped together and spliced to the large #12 wires

Wire Harnesses Nose Gear AutoExtend Controller 39 / 57

coming from the actuator. The microswitch wires can be either #20 or #22 but #22 makes for a
more compact harness.

If you retained the P1 connector from the original EZ-NoseliY harness then that connector can
be re-used by either splicing onto the exis*ng backshell wires or crimping on new Molex
pins(Figure 27):

Figure 27 - Relay Board to Actuator Harness using exisFng EZNoseLi[P1 Molex Connector

With the harness connected only to the motor and microswitches, confirm con*nuity from the
DB15 connector:

Pin 1 -> motor BLACK lead
Pin 2 -> motor BLACK lead
Pin 3 -> Up Limit Switch NC terminal (opposite side from the microswitch pivot point)
Pin 4 -> Down Limit Switch COM terminal (underneath the microswitch pivot point)
Pin 5 -> Down Limit Switch NC terminal (opposite side from the microswitch pivot point)
Pin 6 -> Down Limit Switch NO terminal (middle)
Pin 7 -> motor RED lead
Pin 8 -> motor RED lead

Wire Harnesses Nose Gear AutoExtend Controller 40 / 57

Pin 9 -> motor BLACK lead
Pin 10-> motor BLACK lead
Pin 11 -> Up Limit Switch COM terminal (underneath the microswitch pivot point)
Pin 12 -> Up Limit Switch NO terminal (middle)
Pin 14-> motor RED lead
Pin 15 -> motor RED lead

The preceding test assumes that your limit switch setup is normal (ie, switches are actuated
when the gear strut is not at the limits and spring open when it is fully extended/retracted). If
you have a reversed setup for the UP limit switch, reverse pins 12 and 3. If you have a reversed
setup for the DOWN limit switch, reverse pins 5 and 6.

Wire Harnesses Nose Gear AutoExtend Controller 41 / 57

Main Relay Board to Control Panel Harness

If you are using the control panel board then this is basically just a pin-to-pin mapping, with the
excep*on of pins 18, 22, and 23 which on the Relay board side are gear posi*on sense lines and
a u*lity +5V output (if the +5V supply was installed). These pins are unused on the panel board
side (Figure 28).

Figure 28 - Main Relay Board to Control Panel Board Harness

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

DB25F
30cm (12”)

Gear Switch Up (SW2) Signal

UP LED+

DOWN LED+

AWG 22

AWG 22

AWG 22

AWG 22

AWG 20
AWG 20

AWG 20

AWG 20

AWG 20

AWG 20

AWG 20
AWG 20

AWG 22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

DB25F
AWG 20
AWG 20

AWG 20

AWG 20

30cm (12”)

Gear Switch Down (SW3) Common

Gear Switch Down (SW3) Signal

IN-TRANSIT LED+

AEX Enable Switch AWG 22

AWG 22 AEX Enable Switch LED+

AWG 20 Ground

AWG 20

AWG 20
AWG 20

Switched PowerAWG 16

AWG 16 Unswitched Power

AWG 22

AWG 22

Gear Switch PosiMon Sense Signal (SW4) Signal

AWG 22 Gear Switch UP (SW2) Common

AWG 22 Gear Switch AEX Latch (SW1) Common

AWG 20 Dynamic Brake In

AWG 20 Dynamic Brake Out

AWG 22 Gear DOWN Sense Out

Relay Board Panel Board

(to EFIS)

AWG 22 Gear UP Sense Out (to EFIS)

AWG 20 (Reserved)(to other 5V devices)+5V Out

(Reserved)

(Reserved)

Wire Harnesses Nose Gear AutoExtend Controller 42 / 57

If not using the control panel board, the individual component wiring is a liVle more
complicated (Figure 29):

Figure 29 - Main Relay Board to Discretely Wired Control Panel Harness

Some notes:

• If the Arduino is NOT being used then the gear selector switch can be a 3PDT rather than
a 4PDT; in that case, the SW4 pole wiring is not applicable.

• The Arduino drives the AEX status LED on the AEX enable switch, so if Arduino is not
being used this wiring can be eliminated. Alterna*vely, you could wire it up to the AEX
Enable line with a suitably sized in-line resistor (~1K) so it’s illuminated when AEX is
enabled.

• If a gear power switch is not used (gear controller is always on), there is s*ll a
requirement to bring +12V out to the control panel for the AEX enable switch to func*on

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

DB25F
30cm (12”)

Gear Switch Up (SW2) Signal

UP LED+

DOWN LED+

AWG 22

AWG 22

AWG 22

AWG 22

AWG 20
AWG 20

AWG 20

AWG 20

AWG 20

AWG 20

AWG 20
AWG 20

AWG 22

Gear Switch Down (SW3) Common

Gear Switch Down (SW3) Signal

IN-TRANSIT LED+

AEX Enable Switch AWG 22

AWG 22 AEX Enable Switch LED+

AWG 20 Ground

Switched PowerAWG 16

AWG 16 Unswitched Power

AWG 22

AWG 22

Gear Switch PosiMon Sense Signal (SW4) Signal

AWG 22 Gear Switch UP (SW2) Common

AWG 22 Gear Switch AEX Latch (SW1) Common

AWG 20 Dynamic Brake In

AWG 20 Dynamic Brake Out

AWG 22 Gear DOWN Sense Out

Relay Board

(to EFIS)

AWG 22 Gear UP Sense Out (to EFIS)

AWG 20 (to other 5V devices)+5V Out

Gear Power Switch
+
-

Gear PosiMon Switch

1 2 3 4

+
-

UP LED

+
-

IN-TRANSIT LED

+
-

DOWN LED

AEX Enable Switch

+-

3.32K Resistor

Wire Harnesses Nose Gear AutoExtend Controller 43 / 57

correctly. In this case, any one of pins 1,2,12,13,14,15,24 or 25 on the relay board
connector can be used and would be connected directly to the AEX enable switch.

Wire Harnesses Nose Gear AutoExtend Controller 44 / 57

Main Relay Board to External Sensor Harness

This harness will primarily be used when the Arduino board is NOT being used and the AEX
trigger is either being supplied from some other external source OR the pressure-switch speed
sensors, throVle posi*on switch and LIDAR al*tude switch are being used as per Marc’s original
circuit. This harness plugs into jack J3 on the Main Relay Board (Figure 30).

Figure 30 - Main Relay Board External Interface Harness

Board-to-Board Interconnects

The Arduino Shield interfaces with the Main Relay Board using two interconnect cables with JST-
XH connectors on each end. Obviously if you aren’t using an Arduino then these cables are not
required.

Power Connector Cable

This 3-wire cable carries power (5V and 12V) and ground from the relay board socket J1 to the
Arduino board socket J1(Figure 31):

Figure 31 - Main Relay Board to Arduino Power Harness

Signal Connector Cable

This 6-wire cable carries signals and indicators between the matching J2 sockets on the relay
and shield boards (Figure 32):

1 2 3 4

n/c
LIDAR Altitude Switch OutputAEX Trigger

AEX External Sensor IN
AEX External Sensor OUT Low Speed

Pressure Sw
High Speed
Pressure Sw

Throttle Low
Switch

1 2 3 4 1
 2

 3
 4

GND

+12V
+5V

Wire Harnesses Nose Gear AutoExtend Controller 45 / 57

Figure 32 - Main Relay Board to Arduino Signal Harness

1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 Gear Down Sense

Gear Up Sense
AEX Status LED
Up Switch Sense

AEX Enable Switch

AEX Trigger

Wire Harnesses Nose Gear AutoExtend Controller 46 / 57

Arduino Shield External Interface Cables

There are two DB9 interface cables that originate from the Arduino shield. One carries the
sensor signals for airspeed, throVle and al*tude that enable the Arduino to make an AEX
decision(Figure 33). The other carries the signals that drive the op*onal LCD display and audio
outputs(Figure 34).

Sensor Cable

Figure 33 - Arduinio Shield Sensor Harness

AV Cable

Figure 34 - Arduino Shield to Audio/Visual Outputs Harness

Addi*onal Notes:

1

2

3

4

5

6

7

8

9

DB09F
Gear Down Sense OutAWG 22

Shield Board

EFIS Contact Input

EFIS Serial RXAWG 22 EFIS RS232 or TTL Serial TX

Gear Up Sense OutAWG 22 EFIS Contact Input

LIDAR TTL Serial RX inAWG 22 LIDAR TTL Serial TX

GNDAWG 22 LIDAR GND

AWG 22 +5V LIDAR Power

AWG 22 +12V Misc. equipment

AWG 22 LIDAR Analog AlMtude In LIDAR Analog AlMtude Out

AWG 22 ThroYle Sense In LIDAR Power

1

2

3

4

5

6

7

8

9

DB09F
+5VAWG 22

Shield Board

LCD Display Power

Audio GNDAWG 22 Audio jack barrel

Audio OutAWG 22 Audio Jack Mp

AWG 22 LIDAR TTL Serial TX

n/cAWG 22 n/c

AWG 22 I2C SCL LCD SCL

AWG 22 n/c n/c

AWG 22 I2C SDA LCD SDA

AWG 22 GND LCD GND

n/c

Wire Harnesses Nose Gear AutoExtend Controller 47 / 57

1. If using the LCD display, pins 6 (I2C SCL) and 8 (I2C SDA) should each be wired to a
separate shielded wire, with the shields *ed together and connected to pin 9 (GND),
preferably within the DB9 back-shell. Leave the shields unconnected at the LCD display
end.

Remote Display Nose Gear AutoExtend Controller 48 / 57

Appendix 3 – Remote Display

The op*onal display is a small (16 char x 2 lines) LCD screen which con*nuously shows the
airspeed and AGL al*tude being received by the Arduino unit on the first line. Informa*onal,
warning or error messages are displayed on the second line(Figure 35). Eg:

Figure 35 - Arduino External Display

Assembly is simply a maVer of soldering the power, ground, SCL and SDA from the Arduino
shield AV Connector harness to the appropriate points on the display unit and moun*ng the
display unit into the 3D-printed case.

Note:

This unit is driven via the I2C bus from the Arduino. This bus is not meant for long cable runs or
noisy environments, and in a Cozy IV cockpit we have both. Therefore, it is essen*al that
shielded wire be used to connect the SDA and SCL lines. Note that each line requires its OWN
shielded wire – don’t use a 2-wire cable for this.

If you find that the display is blanking or freezing, this is likely due to the I2C bus glitching from
noise. Installing the I2C booster chip on the shield may fix it, but I have had good luck with just
using the wire shielding as discussed above.

Arduino Considera*ons Nose Gear AutoExtend Controller 49 / 57

Appendix 4 – Arduino Considera8ons

There are many flavours of Arduino to choose from (Nano, Uno, Mega, etc), but only a few will
work with the custom shield. The Arduino hardware design is open-sourced so there are many
variants from different vendors. For our purposes the the main considera*on is that it should
have at least as much dynamic RAM as an UNO (2K) and operate main restric*on is the ability
to handle a +5V supply voltage and +5V signal inputs – many types of Arduino are restricted to
+3.3V supply and signal voltages.

The custom shield was designed to work with an Arduino UNO R3, but there are other styles of
Arduino that will work as well. Here is a non-exhaus*ve list of Arduinos that support +5V and
are pin-compa*ble with the custom shield

• Maker UNO

The board I have used in my builds. I like it because it it’s really cheap (~$10), uses all
surface-mount components so can be mounted flat and has LEDs on the all the GPIO
pins for easy diagnosis. It dispenses with an on-board voltage regulator, so an external
+5V supply is required to power it. (hVps://www.cytron.io/p-maker-uno-simplifying-
arduino-for-educa*on)

• Arduino Mega

A good choice if you want to do other things with the microcontroller than just act as a
gear controller. More GPIO pins, more serial ports, more memory. More $$$.
(hVps://store.arduino.cc/products/arduino-mega-2560-rev3)

• Arduino Uno Rev4

Latest revision, pin compa*ble with Uno Rev3 and offers more memory and a faster
processor (hVps://store-usa.arduino.cc/pages/uno-r4?gad_source=1&gclid=Cj0KCQiAn-
2tBhDVARIsAGmStVlpxJXa2HUSwBKcJcfaq2u71DuJz5TjAEqegS2NQEJsV0ZpYVMsEakaAv
ulEALw_wcB&selectedStore=us)

• Ruggeduino-SE

This is a special hardened version of the UNO, which TBH, I would probably have used in
my build if I knew it existed at the *me. It’s definitely more suited to the cockpit
environment of an airplane, but it’s not par*cularly cheap (~$80). (hVps://www.rugged-
circuits.com/microcontroller-boards/ruggeduino-se-special-edi*on)

LIDAR considera*ons Nose Gear AutoExtend Controller 50 / 57

Appendix 5 - LIDAR Considera8ons

Using the AGL al*tude as an addi*onal criterion to the AEX trigger determina*on prevents
nuisance deployments of the nose gear when the speed envelope and throVle posi*on
requirements are met (such as slow flight, stall demonstra*ons, etc). Thanks probably to all the
interest around autonomous vehicles these days, reasonably-priced LIDARs with 100m+ ranges
are now readily available. (Note: some EFIS systems DISPLAY an AGL al*tude but AFAIK none of
them output it as part of their serial datastreams). Most of these LIDARs boast range resolu*on
under 10cm, so in addi*on to using the LIDAR for the AEX trigger determina*on, we can take
advantage of this to add landing assist func*onality using audio al*tude callouts (Arduino-based
installa*ons only).

Choosing a LIDAR

The Arduino soYware (currently) supports the following LIDARS:

• Lightware SF11C* (100m)
• Lightware SF30C (100m)
• Bennewake TF03* (180m)
• Any LIDAR that can output an analog al*tude signal < 5V* (SF11, SF30, others)

The LIDARs marked with an asterisk (*) have actually been bench tested, for the others, the
support code is based on published specifica*ons and should be regarded as untested soYware.
As far as I am aware, the only LIDAR which has been flight tested with this setup is the
Bennewake TF03, since this is the one I used in my build.

In theory, any LIDAR that can be configured to send a con*nuous datastream (eg, does not need
to be polled) or outputs an analog signal < 5v should be readily adaptable to the exis*ng code
base.

IMO you should choose a LIDAR that has a minimum range of 100m (~300’). There are quite a
few LIDARs that have ranges of 50m (~150’) but given a standard descent profile of ~500’/min
then at 150’ you are only 20 seconds away from touchdown – about the exact amount of *me
required to extend the gear. BeVer to have a liVle margin – in fact, the more margin you have,
the beVer off you are.

Configuring the LIDAR (serial or analog)

The supported LIDARs all output a TTL-level (NB: NOT RS232!) serial datastream. The LIDAR
interface code expects the LIDAR to be connected to the Arduino’s serial port (GPIO pins 0/1).

LIDAR considera*ons Nose Gear AutoExtend Controller 51 / 57

The LIDAR must be configured with the appropriate baud rate: 19200 for the SF11/SF30 and
115200 for the TF03. (115200 is about the max that the UART on the Arduino can handle). The
LIDAR must be configured to output a con*nuous stream of al*tude data packets at least once
per second. It’s beyond the scope of this document to detail how to configure all the different
supported LIDARs – consult the manufacturer’s installa*on guide for procedures on how to do
this.

Some of the supported LIDARs have the op*on to be configured to output an analog al*tude
signal where at the maximum supported al*tude they will output some constant voltage which
then decreases linearly in rela*on to the AGL al*tude. The 10-bit DAC in the Arduino gives
about 1mv resolu*on, so a 0-3.3v range with a 100m LIDAR gives about 3cm (~1”) resolu*on,
plenty accurate enough for our purposes. Again, consult the manufacturer’s installa*on guide
for procedures on how to configure the LIDAR to do this. Note that the analog LIDAR support is
based on the Lightware SF11 and so the conversion factor from voltage to al*tude is specific to
that unit – other analog LIDARs would likely need a different conversion factor. Determina*on
of that factor is leY as an exercise for the reader.

EFIS Considera*ons Nose Gear AutoExtend Controller 52 / 57

Appendix 6 – EFIS considera8ons

Arduino-based installa*ons will need to use an EFIS serial datastream to get airspeed data in
lieu of the airspeed pressure switches called out in Marc’s OG circuit.

The following EFISs are supported:

• MGL ASX-1 (not an EFIS, but provides airspeed data in serial format) *
• Dynon Skyview*
• Garmin G3x
• GRT Horizon

The EFISs marked with an asterisk (*) have actually been bench tested, for the others, the
support code is based on published specifica*ons and should be regarded as untested soYware.

The supported EFISs all have a means of configuring one of their available serial ports to output
a con*nuous stream of data, of which the airspeed is just one part. In theory, any EFIS capable
of outpuang a datastream containing the airspeed should be easily adaptable.

Connec8ng the EFIS to the Arduino Shield

(All EFISs)

Determine which serial port you are going to use, and break out the TX line (the RX line is not
used). This should go to Pin 2 on the “Sensor” DB9 connector of the Arduino shield.

Ensure that jumpers are installed on jumper headers JP2 and JP3 of the Arduino shield, and that
JP1 does NOT have a jumper on it. These jumpers route the incoming RS232 signal from the
EFIS to the MAX3232 converter chip on the Arduino shield.

Note that if a jumper is installed on JP1 and the EFIS is connected and powered up, the high-
voltage RS232 signal will likely fry the GPIO input on the Arduino.

Configuring the EFIS

It’s beyond the scope of this document to detail the steps required to configure the EFIS –
consult the manufacturers documenta*on for this. In general, you will need to determine the
appropriate format for the serial data and set the baud rate to match what is set in the Arduino
code. The data format is an EFIS-specific thing. For the serial communica*on speed, you want
to keep this fairly low due to limita*ons on the soYware serial support of the Arduino. I have

EFIS Considera*ons Nose Gear AutoExtend Controller 53 / 57

had no issues running at 19200 but I wouldn’t go higher than that.

• Skyview

Serial data speed: 9600
Serial data type: DYNON ADAHRS

• Garmin G3X

Serial data speed: 19200
Serial data type: Aatude Air Data

Note that the G3X has the capability to output a “GPS” message which contains the AGL
al*tude. In theory this could be used in place of the LIDAR, however it is only accurate to
100’. This message also only has groundspeed, not airspeed. Implementa*on of this
message to replace the LIDAR is leY as an exercise for the reader.

• GRT Horizon

Serial data speed: 19200
Serial data type: Shadin type ‘Z’

Indicators & Messages Nose Gear AutoExtend Controller 54 / 57

Appendix 7 – Indicators and Messages

Indicators

The AEX status is communicated to the pilot by the status light on the AEX enable switch:

• Off - AEX is not enabled
• Blinking slowly – AEX ini*alizing, wai*ng for data, or opera*ng in sensor degraded mode

(not all sensors repor*ng but at minimum for AEX determina*on)
• Blinking quickly – AEX error (insufficient sensor input for AEX determina*on, unknown

state)
• Steady On – AEX is enabled and armed

Messages

If the LCD display is installed, then AEX status is communicated to pilot via the message line (line
2 of the display).

• “AEX Enabled”

AEX has been enabled via the AEX enable switch. Note this does not mean that AEX is
armed, only that it has the poten*al to be armed.

• “AEX Disabled”

AEX switch was turned off aYer ini*ally being turned on

• “AEX Failed”

An unrecoverable error occurred. The status light will be blinking rapidly. Reseang the
controller by power-cycling may resolve this.

• “AEX Triggered”

AEX has met the trigger condi*ons and will start extending the gear

• “AEX Armed”

All sensors are repor*ng and AEX will deploy the gear when the trigger condi*ons are
met.

Indicators & Messages Nose Gear AutoExtend Controller 55 / 57

• “AEX Armed – WARN”

Not all sensors are repor*ng – AEX opera*ng in degraded mode. AEX will trigger when
the minimum trigger condi*ons are met.

• “Extending Gear”

Gear is extending, either because it was triggered by AEX or manually via the selector
switch

• “Gear Ext. Canceled”

An AEX gear extension was cancelled by recycling the selector switch

• “spd data *meout”

Timeout error detected on the serial airspeed data input. If Al*tude data is s*ll
repor*ng, AEX will remain armed in degraded mode.

• “alt data *meout”

Timeout error detected on the serial al*tude data input. If airspeed data is s*ll
repor*ng, AEX will remain armed in degraded mode.

• “wt: spd/alt data”

AEX is ini*alizing – wai*ng for airspeed and/or al*tude data streams to begin. Typically
seen on systems with gear controller power switches when the gear controller is on but
the master power is not.

• “WRN:Armed no spd”

AEX is armed but no speed data is available

• “WRN:Armed no alt”

AEX is armed but no al*tude data is available

• “Er: no spd, no alt”

AEX enabled but no airspeed and no al*tude data is available. AEX status switch will be
flashing quickly

Indicators & Messages Nose Gear AutoExtend Controller 56 / 57

• “Er: audioini fail”

Unable to talk to the audio daughter card; audio alerts disabled

Indicators & Messages Nose Gear AutoExtend Controller 57 / 57

Appendix 8 – Bill of Materials

This list is compiled from the master lists on the Digikey site (hyperlinked at various points
above). In the event of discrepancies from what is here vs the Digikey lists, the Digikey lists
should be considered gospel.

Figure 36 - Complete Bill of Materials (BOM)

Description Digi-Key Part Number Quantity Unit Price Extended Price

RELAY GEN PURPOSE DPDT 30A 12V PB351-ND 2 $25.51 $51.02
RELAY GEN PURPOSE 3PDT 10A 12V Z11232-ND 1 $17.40 $17.40
CONN D-SUB PLUG 15POS R/A SLDR 609-1492-ND 1 $2.68 $2.68
CONN D-SUB PLUG 25POS R/A SLDR 609-1504-ND 1 $4.45 $4.45
DIODE GEN PURP 1KV 1A DO41 1N4007DICT-ND 10 $0.14 $1.41
CONN HEADER VERT 2POS 2.54MM 929450-01-02-ND 2 $0.71 $1.42
MICRO-MINIATURE SMT JUMPER 36-5102CT-ND 3 $0.34 $1.02
TERM BLK 2POS SIDE ENTRY 5MM PCB ED1631-ND 1 $1.61 $1.61

DC DC CONVERTER 5V 3W 945-1648-5-ND 1 $3.25 $3.25
CAP CER 10UF 25V X5R RADIAL 445-181284-1-ND 1 $0.52 $0.52
FIXED IND 12UH 2.4A 130 MOHM TH 495-6783-1-ND 1 $0.59 $0.59

TRANS NPN 30V 0.8A TO18 1514-2N2222PBFREE-ND 2 $2.36 $4.72
RESISTOR KIT - 1/4W (500 TOTAL) 1568-COM-10969-ND 1 $8.95 $8.95

TRANS NPN 60V 10A TO220 D44H8GOS-ND 1 $1.05 $1.05

PTC RESET FUSE 60V 750MA 2920 F5633CT-ND 1 $0.74 $0.74
PTC RESET FUSE 16V 6.0A 2920 18-2920L600/16MRCT-ND 1 $0.86 $0.86

MAKER UNO 3614-MAKER-UNO-ND 1 $7.18 $7.18
CONN D-SUB PLUG 9POS R/A SLDR 609-1480-ND 2 $2.54 $5.08
ARDUINO STACKABLE HEADER KIT - R 1568-1413-ND 1 $1.75 $1.75
CAP CER 0.1UF 50V X7R RADIAL 399-9870-1-ND 2 $0.22 $0.44
CAP CER 0.33UF 5% 50V X7R RADIAL 399-13993-ND 2 $0.55 $1.10
CAP ALUM 100UF 20% 25V RADIAL 732-8825-1-ND 1 $0.13 $0.13
CONN HEADER VERT 2POS 2.54MM 929450-01-02-ND 3 $0.71 $2.13
IC TRANSCEIVER FULL 2/2 16TSSOP 296-13096-1-ND 1 $1.00 $1.00

DFROBOT DFPLAYER PRO - A MP3 PLA 1738-DFR0768-ND 1 $8.90 $8.90
CONN JACK STEREO 3.5MM 889-1822-ND 1 $1.58 $1.58

GRAVITY: I2C 16X2 ARDUINO LCD WI 1738-1418-ND 1 $11.90 $11.90
IC ACCELERATOR I2C 1CH SC70-6 LTC4311ISC6#TRPBFCT-ND 1 $6.02 $6.02
CAP CER RAD 10NF 25V C0G 10% C321C103K3G5TA-ND 1 $0.52 $0.52

CONN D-SUB PLUG 25POS R/A SLDR 609-1504-ND 1 $4.45 $4.45
SWITCH ROCKER DPST 10A 125V CKN2068-ND 1 $8.65 $8.65
SWITCH TOGGLE 4PDT 5A 120V EG2429-ND 1 $10.82 $10.82
LED RED 1/4" HOLE 12V PANEL MNT 5102H1-12V-ND 1 $3.30 $3.30
LED GREEN 1/4" HOLE 12V PAN MNT 5102H5-12V-ND 1 $3.30 $3.30
LED YELLOW 1/4" HOLE PANEL MOUNT L20697-ND 1 $7.20 $7.20
SWITCH ROCKER SPST 16A 125V SW649-ND 1 $3.61 $3.61
CONN HEADER VERT 2POS 2.5MM 455-B2B-XH-A-ND 8 $0.15 $1.20
CONN HEADER VERT 4POS 2.5MM 455-B4B-XH-A-ND 2 $0.23 $0.46
CONN QC RCPT 14-16AWG 0.187 A0910CT-ND 2 $0.47 $0.94
CONN QC RCPT 18-22AWG 0.110 A27949CT-ND 6 $0.45 $2.70
RES 3.3K OHM 5% 1/4W 1206 RMCF1206JT3K30CT-ND 1 $0.10 $0.10

Audio Alerts Option

Remote Display Option

Control Panel

Main Relay Board

5V Regulated Supply Option

EFIS-friendly Gear Position Signals Option

Positive AEX Trigger Option

Self-resetting Circuit Protection Option

Arduino Basic

